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Front Matter Preface

Introduction

In Multivariable Calculus, we extend our work from analysis into higher dimensions. We begin by ex-
ploring the notions of convergence and continuity for vector and matrix-valued functions before studying
the Fréchet derivative. We then cover vector fields, line and surface integrals, and integral theorems.
This document is intended to broadly cover all the topics within the Multivariable Calculus module.

Disclaimer: I make absolutely no guarantee that this document is complete nor without error. In
particular, any content covered exclusively in lectures (if any) will not be recorded here. This document
was written during the 2022 academic year, so any changes in the course since then may not be accurately
reflected.

Notes on formatting
New terminology will be introduced in italics when used for the first time. Named theorems will also be
introduced in italics. Important points will be bold. Common mistakes will be underlined. The latter
two classifications are under my interpretation. YMMV.

Content not taught in the course will be outlined in the margins like this. Anything outlined like this
is not examinable, but has been included as it may be helpful to know alternative methods to solve
problems.

The table of contents above, and any inline references are all hyperlinked for your convenience.

Scalars are written in lowercase italics, c, or using Greek letters.

Vectors are written in lowercase bold, v, or rarely overlined, ←→v , where more contrast or clarity is
required.

Matrices are written in uppercase bold, A.

Note: transformations represented by matrices may be written in just italics, as functions often are, i.e.,
s(v) = Av.

History
First Edition: 2023-04-20∗

Current Edition: 2023-05-01

Authors
This document was written by R.J. Kit L., a maths student. I am not otherwise affiliated with the
university, and cannot help you with related matters.

Please send me a PM on Discord @Desync#6290, a message in the WMX server, or an email to War-
wick.Mathematics.Exchange@gmail.com for any corrections. (If this document somehow manages to
persist for more than a few years, these contact details might be out of date, depending on the main-
tainers. Please check the most recently updated version you can find.)

If you found this guide helpful and want to support me, you can buy me a coffee!

(Direct link for if hyperlinks are not supported on your device/reader: ko-fi.com/desync.)

∗Storing dates in big-endian format is clearly the superior option, as sorting dates lexicographically will also sort dates
chronologically, which is a property that little and middle-endian date formats do not share. See ISO-8601 for more details.
This footnote was made by the computer science gang.
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MA259 Notation

1 Notation

The notation in this guide has been chosen to be compatible with the lecture notes where possible.

One notable difference is that vectors and vector-valued functions are written in lowercase bold, v, to
distinguish them from scalar-valued variables and functions, which will are written in italics, c, or in
Greek letters, and matrices will be written in uppercase bold, A. Writing vector-valued functions in
bold might be somewhat inconsistent throughout the derivatives section, but will certainly be done for
things like parametrisations.

∥v∥ Euclidean norm of the vector v. Also written as ∥v∥2 when discussing other
ℓp norms. Written as |v| instead, when matrix-norms are also in use.

∥v∥∞ The infinity norm of the vector v.

∥v∥1 The taxicab or Manhattan norm of the vector v.

∥A∥F Frobenius norm of the matrix A. Treats the matrix like a vector, then com-
putes the ordinary Euclidean norm.

∥T∥ Operator norm of the linear map v. We will sometimes put a matrix into this
norm, as they are isomorphic to linear transformations. Also just written as
∥ · ∥op.

C(U,Rk) Space of continuous functions f : U → Rk. Also written as C0(U,Rk) (see next
entry), or as C(U) when k = 1.

Cn(U,Rk) Space of functions f : U → Rk continuously differentiable n times.

Br(a) Open ball of radius r centred at a point a. That is, the set {x ∈ Rn : ∥x−a∥ <
r}. Also written as B(a,r).

Br Open ball of radius r centred on the origin; Br(0).

B Unit open ball centred on the origin; B1(0)

Br(a) Closed ball of radius r centred at a point a. That is, the set {x ∈ Rn : ∥x−a∥ ≤
r}. Also written as B(a,r).

Br Closed ball of radius r centred on the origin; Br(0)

B Unit closed ball centred on the origin; B1(0).

Sn(r) The n-sphere of radius r; the boundary of Br(0); the set {x ∈ Rn+1 : |x| = r}.

Multivariable Calculus | 1



MA259 Notation

Sn The unit n-sphere; Sn(1).

L(Rn,Rk) The space of linear maps T : Rn → Rk.

L(Rn) The space of linear maps T : Rn → Rn; isomorphic to and hence interchangable
with the space of k × n matrices with real entries.

M(k × n,R) The space of k × n matrices with real entries. Also abbreviated as Rk×n.

M(n,R) The space of n× n matrices with real entries; M(n× n,R)

GL(n,R) The group of invertible linear maps T : Rn → Rk; the group of nonsingular
n× n matrices with real entries.

∆(A) The multilinear function that sends a matrix A to its determinant. Not to be
confused with the Laplacian.

M∗ The Lipschitz constant of a function; the upper bound on how quickly a func-
tion can vary.

∂f

∂xi

The partial derivative of a function f with respect to the variable xi. Also
written as ∂xi

f(x); just as ∂if(x); or if f has few variables, as fx, fy, etc.

∂vf(x) The directional derivative of f at x in the direction of v. Also written as
Dvf(x). If v is one of the basis vectors, then this is the partial derivative.

∇ The del or nabla operator; can be thought of as a vector full of partial differ-

ential operators
[

∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xn

]⊤
.

∇f The gradient of f ; the vector
[

∂f
∂x1

, ∂f∂x2
, . . . , ∂f

∂xn

]⊤
; also written as grad(f).

∇ · v The divergence of v; calculated by “dotting” the del operator with the vector
field v; also written as div(f).

∇× v The curl of v; calculated by “crossing” the del operator with the vector field v;
also written as curl(f).

Df(x) The Fréchet derivative of f at x.

∂f The Jacobian matrix of f . Also written as Df , because it’s the same thing as
the Fréchet derivative in finite dimensions.

Multivariable Calculus | 2



MA259 Notation

Gf The graph of a function f ; if f takes two variables, then Gf is the surface
parametrised by r(x,y) = (xy,f(x,y)).

v A vector field; a function v : (U ⊆ Rn)→ Rn.

v⊥ The rotation of the vector v ∈ R2 90◦ clockwise; if v = (x,y), then v⊥ =
(y,− x).

r(t) The parametrisation r : [a,b]→ R2 of a curve C ⊂ R2.

ρ(s) The arclength or unit speed parametrisation ρ : [0,L]→ R2 of a curve C.

ṙ(t) The tangent to r(t); given by differentiating r componentwise.

ρ̇(s) The unit tangent to ρ(s); given by differentiating ρ componentwise.

N(t) The normal to r(t); given by ṙ(t)⊥.

n(t) The unit normal to ρ(s); given by ρ̇(s)⊥.

� L

0

v
(
ρ(s)

)
· ρ̇(s)ds The tangential line integral of v along C. Calculated using

� b

a
v
(
r(t)

)
· drdt dt,

where r is a parametrisation of C.

�
C

v · dr Alternative notation for the tangential line integral of v along C.

� L

0

v
(
ρ(s)

)
· n(s)ds The flux integral of v along C; the normal line integral of v along C (compare

with the tangential line integral above);. Calculated using
� b

a
v
(
r(t)

)
·N(t) dt.

r(u,v) The parametrisation of a surface S ⊂ R3.

�
S

v · n dA The flux integral of n across a surface S. Calculated using
�

U
v
(
r(u,v)

)
·(

∂r
∂u ×

∂r
∂v

)
du dv.

�
S

v · dS Alternative notation for the flux integral of v across S. Also written as
�

S
v ·

n dS, or
�

S
v · dA.

∆f The Laplacian of f ; calculated as∇·(∇f), or, the sum of the second derivatives
of f ; also written as ∇ · ∇ or ∇2.

D2f(x) The Hessian (transformation) of f .

∂2f(x) The Hessian matrix of f ; also written as Hess f(x).
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Np An (open) neighbourhood of a point p.

Γc The level set of a function set equal to c; the set of inputs to a function such
that the output is c.

Multivariable Calculus | 4



MA259 Convergence and Continuity

2 Convergence and Continuity

2.1 Convergence in Rn

A sequence (xi)
∞
i=1 of vectors in Rn converges to x ∈ Rn if,

∀ε > 0,∃N ∈ N : i > N → ∥xi − x∥ < ε

where ∥ · ∥ is the euclidean norm.

Theorem 2.1 (Uniqueness of Limits). If (xi)
n
i=1 converges to both x and y, then x = y.

Theorem 2.2 (Componentwise Convergence). A sequence (xi)
n
i=1 ⊆ Rn converges to y if and only if

for each i ∈ [1,n],

lim
j→∞

xi,j = yi

That is, the real number sequences of components of (xi) all individually converge to their corresponding
component of y.

The uniform, max or infinity norm, denoted by, ∥ · ∥∞ is defined by,

∥x∥∞ := max
(
|x1|, . . . ,|xn|

)
, x = (x1, . . . ,xn)

The taxicab or Manhattan norm, denoted by ∥ · ∥1 is defined by,

∥x∥1 := |x1|+ . . .+ |xn|, x = (x1, . . . ,xn)

Theorem 2.3. For all x ∈ Rn,

∥x∥∞ ≤ ∥x∥ ≤
√
n∥x∥∞

and

∥x∥ ≤ ∥x∥1 ≤
√
n∥x∥

Theorem 2.4 (Algebra of Limits). If (xi)→ x and (yi)→ y, then,

• lim
i→∞

(αxi + βyi) = αx+ βy

for all α,β ∈ R;

• lim
i→∞
⟨xi,yi⟩ = ⟨x,y⟩

where ⟨−,−⟩ is any inner product, such as the scalar product;

• lim
i→∞

∥xi∥ = ∥x∥

where ∥ · ∥ is any norm.

A sequence (xi) is bounded if there exists M > 0 such that ∥xi∥ < M for all i ∈ N.

Theorem 2.5 (Boundedness of Convergent Sequences). If (xi) converges to some x, then (xi) is bounded.

Theorem 2.6 (Bolzano-Weierstrass for Vectors). Any bounded sequence (xi)
∞
i=1 ⊆ Rn has a convergent

subsequence (xij ).

Multivariable Calculus | 5



MA259 2.2 Continuity

2.2 Continuity

A function f : (U ⊆ Rn)→ Rk is continuous at a point p ∈ U if,

∀ε > 0,∃δ > 0 : ∥x− p∥ < δ → ∥f(x)− f(p)∥ < ε (ε− δ Continuity)

or if, for all sequences (xi)→ p, (
f(xi)

)
→ p (Sequential Continuity)

f is then said to be continuous at U if f is continuous at all points p ∈ U .

We write C(U,Rk) to denote the space of continuous functions f : U → Rk.

A function f : U → Rk has a (continuous) limit at p ∈ U if there exists a vector q ∈ Rk such that,

∀ε > 0,∃δ > 0 : (x ∈ U) ∧ (0 < ∥x− p∥ < δ)→ ∥f(x− q)∥ < ε

and we write limx→p f(x) = q.

Just as for limits of sequences, continuous limits are unique. We also have that f is continuous at p if
and only if limx→p f(x) = p.

Given a real-valued function f : R2 → R, we define two families of functions gy and hx by

gy(x) = f(x,y) = hx(y)

In computer science terminology, g and h are the partial applications of f in the first and second
arguments, respectively.

A function f : R2 → R is separately continuous at (a,b) if gb is continuous at a and ha is continuous at b.

Continuity implies separate continuity, but not the converse.

Example. Define f : R2 → R by

f(x,y) =

{
1 xy ̸= 0

0 xy = 0

Then, g0(x) = 0 for all x and h0(y) = 0 for all y, so f is separately continuous at (0,0). But,

lim
(x,y)→(0,0)

f(x,y) = lim
n→∞

f

(
0,
1

n

)
= 0 ̸= 1 = lim

n→∞
f

(
1

n
,
1

n

)
= lim

(x,y)→(0,0)
f(x,y)

so

lim
(x,y)→(0,0)

f(x,y)

does not have a unique value and hence does not exist.

Theorem 2.7 (Continuity of Sums). If f ,g : (U ⊆ Rn)→ Rk are both continuous at p ∈ U , then αf+βg
is continuous at p for all α,β ∈ R.

Theorem 2.8 (Continuity of Real-Valued Products). If f,g : (U ⊆ Rn) → R are both continuous at
p ∈ U , then (fg)(x) := f(x)g(x) is continuous at p.

Theorem 2.9 (Continuity of Quotients). If f,g : (U ⊆ Rn) → R are both continuous at p ∈ U , and
g(x) ̸= 0 for all x ∈ U, then (f/g)(x) := f(x)/g(x) is continuous at p.

Multivariable Calculus | 6



MA259 2.2 Continuity

Theorem 2.10 (Continuity of Composition). If f : (U ⊆ Rn) → Rk is continuous at p ∈ U and
g : (V ⊆ Rk)→ Rm is continuous at f(p) ∈ V , and f(U) ⊆ V , then g ◦ f : U→ Rm is continuous at p.

Theorem 2.11 (Componentwise Continuity). A function f : (U ⊆ Rn)→ Rk defined by

(x1, . . . ,xn) 7→
(
f1(x1, . . . ,xn),f2(x1, . . . ,xn), . . . ,fk(x1, . . . ,xn)

)
where (fj)

k
j=1 are real-valued functions, is continuous at p ∈ U if and only if every fj is continuous at

p.

That is, f is continuous if and only if every component fj is individually continuous.

Theorem 2.12. If f : R→ R is continuous at p ∈ R, then any function Rn → R defined by

(xi)
n
i=1 7→ f(xj)

is continuous on {(xi)ni=1 : xj = p}

That is, any function that is continuous as a function R→ R is also continuous as a function Rn → R.

A function f : Rn → Rk is continuous along lines or linearly continuous at a point p ∈ Rk if the
restriction fL of f to the line L passing through p is continuous for every such line L.

Continuity implies linear continuity, but not the converse.

Example. Define f : R2 → R by

f(x,y) =

{
1 0 < y < x2

0 otherwise

f = 0 over any sufficiently short line segment that passes through the point (0,0), so limx→0 f(x,ax) = 0
along any straight line path and f is linearly continuous at (0,0). But,

lim
n→0

f

(
n,
1

2
n2

)
= 1 ̸= 0 = f(0,0)

so f is discontinuous at (0,0).

Linear continuity implies separate continuity, but not the converse.

Example. Define f : R2 → R by

f(x,y) =

{
1 xy = 0

0 xy ̸= 0

g0(x) = 1 for all x, and h0(y) = 1 for all y, so f is separately continuous at (0,0). But,

lim
n→0

f(n,n) = 0 ̸= 1 = f(0,0)

so f is not linearly continuous at (0,0).

Continuity→ Linear Continuity→ Separate Continuity

Multivariable Calculus | 7



MA259 Topology on Rn

3 Topology on Rn

The open ball of radius r > 0 centred at a point a ∈ Rn, denoted by Br(a) or B(a,r), to be the the set
{x ∈ Rn : ∥x− a∥ < r}. We abbreviate Br(0) to B(r), and B1(0) (the unit open ball) to B.

Similarly, the closed ball of radius r > 0 centred at a point a ∈ Rn, denoted by Br(a) or B(a,r), to be
the the set {x ∈ Rn : ∥x− a∥ ≤ r}. We abbreviate Br(0) to B(r), and B1(0) (the unit closed ball) to B.

A set X ⊆ Rn is closed, if for every sequence (xi)
∞
i=1 ⊆ X of points in X that converges to a limit point

x ∈ Rn, we also have x ∈ X. That is, X is closed (in the algebraic sense) under sequential limits.

A set U ⊆ Rn is open if for all x ∈ U , there exists ε > 0 such that Bε(x) ⊂ U .

The empty set and Rn are both open and closed, or clopen.

Theorem 3.1. A set is open if and only if its complement is closed.

Theorem 3.2. Open balls are open sets.

Theorem 3.3. Closed balls are closed sets.

Theorem 3.4 (Arbitrary Union of Open Sets). If (Ui)i∈I is a (possibly uncountable) collection of open
sets, then, ⋃

i∈I

Ui

is open.

Theorem 3.5 (Finite Intersection of Open Sets). If (Ui)
n
i=1 is a finite collection of open sets, then,

n⋂
i=1

Ui

is open.

Corollary 3.5.1. An arbitrary intersection or finite union of closed sets is closed.

Let E ⊆ Rn. Given ε > 0, the ε-neighbourhood N (E,ε) of E is defined by,

N (E,ε) :=
⋃
x∈E

B(x,ε)

The ε-neighbourhood of a set is always open.

3.1 Continuity and Topology

Rewriting the ε − δ definition of continuity in terms of open sets, a function f : (U ⊆ Rn) → Rk is
continuous at a point p ∈ U if,

∀ε > 0,∃δ > 0 : f
(
(B(p,δ) ∩ U)

)
⊂ B(f(p),ε)

Applying the inverse to both sides of the inclusion, we have,

∀ε > 0,∃δ > 0 : B(p,δ) ∩ U ⊂ f−1
(
B(f(p),ε)

)
This suggests the following alternative characterisations of continuity:

Theorem 3.6. For any function f : Rn → Rk, the following statements are equivalent:

• f is continuous at all points of Rn.

Multivariable Calculus | 8



MA259 3.2 Compactness

• f−1(V ) is open whenever V ⊆ Rn is open.

• f−1(F) is closed whenever F ⊆ Rn is closed.

Note that this does not imply that the image of an open (closed) set under a continuous function is open
(resp. closed): only inverse images preserve the topology of a set.

3.2 Compactness
A set K ⊆ Rn is sequentially compact if every sequence (xi)

∞
i=1 ⊂ K has a convergent subsequence (xij )

whose limit is in K.

A set K ⊆ Rn is bounded if there exists some M > 0 such that ∥x∥ ≤M for all x ∈ K.

Theorem 3.7. A set K ⊆ Rn is sequentially compact if and only if it is closed and bounded.

Theorem 3.8 (Continuity Preserves Sequential Compactness). If f : K → Rk is continuous and K is
sequentially compact, then f(K) is also sequentially compact.

Theorem 3.9 (Extreme Value Theorem). Let K ⊂ Rn be sequentially compact, and let f : K → R be
continuous. Then, there exists x∗,x

∗ ∈ K in K such that

f(x∗) ≤ f(x) ≤ f(x∗)

for all x in K.

That is, a continuous real-valued function defined over a sequentially compact space attains its extreme
values within that space.

Proof. Because f is continuous and K is sequentially compact, f(K) is also sequentially compact, and
is hence closed and bounded. Then, the values

U := sup f(K), L := inf f(K)

are both finite and there exists sequences (ai),(bi) ⊂ K such that (ai) → L and (bi) → U . As f(K) is
closed, we have L,U ∈ f(K), so x∗ := f−1(L) and x∗ := f−1(U) exist, and satisfy,

f(x∗) = L ≤ f(x) ≤ U = f(x∗)

for all x in K, as required. ■

Corollary 3.9.1. Let K ⊂ Rn be sequentially compact and let f : K → Rk be continuous. Then, there
exists x∗,x

∗ ∈ K in K such that

∥f(x∗)∥ ≤ ∥f(x)∥ ≤ ∥f(x∗)∥

for all x in K.

Proof. The map ∥ · ∥ : Rk → R is continuous, so x 7→ ∥f(x)∥ is a continuous map K → R. ■

4 The Space L(Rn,Rk) of Linear Maps

We denote the space of linear maps T : Rn → Rk by L(Rn,Rk). If n = k, this is abbreviated to L(Rn).
We denote the space of k × n matrices with real entries by M(k × n,R), also abbreviated to Rk×n.

We associate every matrix A ∈ Rk×n with a linear map T ∈ L(Rn,Rk) defined by

T (x) = Ax
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and we can write this association as a map µ : Rk×n → L(Rn,Rk) that sends a matrix to the linear map
it represents under the standard bases of Rn and Rk. Moreover, µ is a linear isomorphism.

We also have thata1,1 · · · a1,n
...

...
ak,1 · · · ak,n

 ∼= [a1,1, . . . ,a1,n,a2,1, . . . ,a2,n,a3,1, . . . ,ak,1, . . . ,ak,n]
⊤

is a linear isomorphism, so,

dim(L(Rn,Rk)) = dim(Rk×n) = dim(Rnk) = nk

4.1 Matrix Norms
To discuss continuity of functions with matrix-valued inputs or outputs, we need to define a norm on
L(Rn,Rk), or equivalently, on Rk×n. In this section, we will write vector norms as | · |, while matrix/linear
map norms will be written as ∥ · ∥ for contrast.

The first such norm we might think of is to use the matrix-vector isomorphism above, and define the
Frobenius norm ∥ · ∥F : Rk×n → R by,

∥(ai,j)∥F :=

√√√√ k∑
i=1

n∑
j=1

a2i,j

That is, treat the matrix as a vector, then calculate the ordinary Euclidean norm.

The operator norm ∥ · ∥op : L(Rn,Rk)→ R, also denoted by just ∥ · ∥, is defined by,

∥T∥ := sup
x∈Rn\{0}

|T (x)|
|x|

Informally, the operator norm is the maximum factor by which the transformation lengthens vectors.
That is, the operator norm satisfies,

|T (x)| ≤ ∥T∥|x|

for all x ∈ Rn.

Writing T as a matrix multiplication, by linearity, we have,

|Ax|
|x|

=
1

|x|
Ax

=

∣∣∣∣ 1

|x|
Ax

∣∣∣∣
=

∣∣∣∣A(
x

|x|

)∣∣∣∣
Because

∣∣∣ x
|x|

∣∣∣ = 1, this gives,

∥A∥ = sup
|x|=1

|Ax|

There are some more alternative characterisations of the operator norm for more general normed spaces.
For instance, note that the above definitions are not well-defined if the codomain of the linear operator
is the trivial space. Let T : V →W be a linear transformation with matrix A. Then,

∥T∥ = inf{M ≥ 0 : |Av| ≤M |v|,v ∈ V }
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= sup{|Av| : |v| ≤ 1,v ∈ V }
= sup{|Av| : |v| < 1,v ∈ V }
= sup{|Av| : |v| ∈ {0,1},v ∈ V }

Theorem 4.1. The operator norm is a norm. That is, it satisfies,

• ∥T∥ = 0↔ T = 0 (Point separating)

• ∥αT∥ = |α|∥T∥ (Absolute homogeneity)

• ∥T + U∥ ≤ ∥T∥+ ∥U∥ (Triangle inequality)

Theorem 4.2. For any linear transformation T with matrix A, we have,

1√
n
∥A∥F ≤ ∥T∥ ≤ ∥A∥F

Theorem 4.3 (Composition Bound). For any A ∈ L(Rn,Rk) and B ∈ L(Rk,Rm), the map B ◦ A ∈
L(Rn,Rm) satisfies,

∥B ◦A∥ ≤ ∥A∥∥B∥

Proof.

|(B ◦A)(x)| = |B(A(x))|
≤ ∥B∥|A(x)|
≤ ∥B∥∥A∥|x|

for all x ∈ Rn, so,

|(B ◦A)(x)|
|x|

≤ sup
|(B ◦A)(x)|

|x|
≤ ∥B∥∥A∥|x|

■

4.2 Convergence and Continuity in L(Rn,Rk)

These are defined identically to sequences (xi)
∞
i=1 ⊂ Rn and functions f : (U ⊆ Rn)→ Rk.

That is, a sequence (Ti)
∞
i=1 ⊂ L(Rn,Rk) of linear transformations converges to T ∈ L(Rn,Rk) is,

∀ε > 0,∃N ∈ N : i > N → ∥Ti − T∥ < ε

We can also use the Frobenius norm in place of the operator norm here to similarly define convergence
of sequences of matrices, and because Rk×n ∼= Rkn, this implies that both Rk×n and L(Rn,Rk) are both
complete spaces, so every convergent sequence of linear transformations or matrices is also Cauchy.

4.3 Matrix-Valued Functions

A function f : U → Rk×n is continuous at x ∈ U if,

∀ε > 0∃δ > 0 : |y − x| < δ → ∥f(y)− f(x)∥F < ε
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Because the Frobenius norm on matrices in Rk×n is equivalent to the Euclidean norm on vectors in Rnk,
we also have that a matrix-valued function is continuous if and only if it is componentwise continuous.

This also provides an easy way to check if a linear-transformation-valued function f : U → L(Rn,Rk) is
continuous: check if every entry of the matrix representing the linear transformation output is continuous.

Theorem 4.4. The map ∆ : Rn×n → R that sends a matrix to its determinant is continuous with respect
to the Frobenius norm on Rn×n.

Proof. The determinant is a polynomial of degree n in its n2 variables, and polynomials are continuous
on (Rn2

,| · |) ∼= (Rn×n,∥ · ∥F ). ■

4.4 The Space GL(n,R) ⊂ L(Rn) of Invertible Linear Maps

It is clear that if a linear map T : Rn → Rk is a bijection, then n = k and ker(T ) = {0}. But by the
rank-nullity theorem, the converse also holds. That is, a linear map T : Rn → Rk is a bijection if and
only if k = n and ker(T ) = {0}.

The general linear group over the real numbers, denoted by GL(n,R), is defined by,

GL(n,R) := {T ∈ L(Rn) : T is invertible}

with the group operation given by composition. In terms of matrices, this is equivalent to,

GL(n,R) := {A ∈ Rn×n : det(A) ̸= 0}

Note that GL(1,R) ∼= (R∗,×).

Theorem 4.5. The space GL(n,R) is an open subset of Rn×n

Proof. GL(n,R) = ∆−1(R \ {0}), and R \ {0} is open, so GL(n,R) is open by the continuity of ∆. ■

GL(n,R) being open means that invertibility of a linear map in L(Rn) is a stable property: a linear map
can be perturbed somewhat, and remain invertible. The next theorem quantifies exactly how much a
linear map A can be perturbed, in terms of ∥A−1∥.

Theorem 4.6. Given A ∈ GL(n,R), let α :== 1
∥A−1∥ . If B ∈ L(Rn) and ∥B − A∥ < α, then B is

invertible. That is, Bα(A) ⊂ GL(n,R). Furthermore,

∥B −A∥ < α→ ∥B−1∥ ≤ 1

α− ∥B −A∥

Theorem 4.7. The map ( · )−1 : GL(n,R)→ GL(n,R) defined by A 7→ A−1 is continuous.

4.5 Lipschitz Continuity

A map f : U → Rk is Lipschitz continuous on U if there exists an M > 0 such that,

|f(x)− f(y)| ≤M |x− y|

for all x,y ∈ U .

The Lipschitz constant or modulus of (uniform) continuity M∗ of f is then defined by,

M∗ := sup
x̸=y

x,y∈U

|f(x)− f(y)|
|x− y|
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Intuitively, a Lipschitz continuous function is limited in how fast it can change: for any pair of distinct
points, the absolute value of the gradient of the line connecting them is bounded by this Lipschitz
constant.

Note that Lipschitz continuity of a function is a very strong form of continuity, and it implies uniform
(and hence regular) continuity of the function:

∀ε > 0 : |x− y| < ε

M
→ |f(x)− f(y)| < ε

Theorem 4.8. Every linear map T is continuous.

Proof. By linearity, T (x)− T (y) = T (x− y), and so,

|T (x)− T (y)| = |T (x− y)| ≤ ∥T∥|x− y|

■

Theorem 4.9. The map | · | : Rn → R≥0 is Lipschitz continuous with Lipschitz constant M∗ = 1.

Proof. By the reverse triangle inequality, we have,∣∣|x| − |y|∣∣ ≤ |x− y|
■

The same holds for any norm, so the operator norm and Frobenius norm are both Lipschitz continuous
with Lipschitz constant M∗ = 1.

5 The Derivative

In this section, U ⊆ Rn will be an open subset of Rn. This means that if p ∈ U , then in any limit
limx→p, x may approach p from any direction.

5.1 Partial Derivatives
A partial derivative of a multivariate function is its derivative with respect to one of its variables, with
the other variables held constant.

Let {ei}ni=1 be the standard basis of Rn. For any function f : (U ⊆ Rn) → Rk with U open, a partial
derivative of f at the point x ∈ U with respect to the i-th variable xi is defined as,

∂f

∂xi
= lim

h→0

f(x1,x2, . . . ,xi−1,xi + h,xi+1, . . . ,xn)− f(x1,x2, . . . ,xi−1,xi,xi+1, . . . ,xn)

h

= lim
t→0

f(x+ hei)− f(x)
h

Other notations include ∂xi
f(x) or ∂if(x). If f is a function of only a few variables, then it is more

common to write, say f(x,y,z), rather than f(x1,x2,x3), and we write fx for the partial derivative of f
with respect to x.

Theorem 5.1 (Algebra of Partial Derivatives). If f,g : (U ⊆ Rn)→ Rk, then,

• ∂i(f + g) = ∂if + ∂ig;

• ∂i(fg) = (∂if)g + f∂ig.

Multivariable Calculus | 13



MA259 5.2 Directional Derivatives

5.2 Directional Derivatives
The rate of change of a multivariable function depends on the direction in which the change is measured.

Given a direction vector −→v ∈ Rn and a point x ∈ Rn, the line Lx,−→v passing through x in the direction
of −→v is parametrised by r(t) = x + t−→v . Now, for any function f : (U ⊆ Rn) → Rk with U open,
there exists τ > 0 such that the line segment x + t−→v is contained in U for t ∈ (−τ,τ). The restricton
fx,−→v : (−τ,τ)→ Rk of f to this line segment is defined by,

fx,−→v (t) := f(x+ t−→v )

This is now a function of a single real variable, so we can differentiate it componentwise.

The directional derivative of f in the direction of v, denoted by Dvf(x) or ∂vf(x), is defined by,

∂vf(x) :=
d

dt
fx,v(t)

∣∣∣∣
t=0

=
d

dt
f(x+ tv)

∣∣∣∣
t=0

= lim
t→0

f(x+ t−→v )− f(x)
t

In practice, you can calculate the directional derivative by multiplying the components of the normalised
direction vector by the corresponding partial derivatives, or equivalently, by calculating the scalar product
of the gradient and the direction vector: ∂vf = ∇f · v (where v is a unit vector).

Example. Find the directional derivative of f(x,y) = x2 − y2 in the direction of v = (a,b).

Since we are not given values for a and b, we do not modify v, but in general, we would normalise v first.

We compute the directional derivative from the definition:

d

dt
f
(
(x,y) + t(a,b)

)∣∣∣∣
t=0

=
d

dt
f(x+ ta,y + tb)

∣∣∣∣
t=0

=
d

dt

[
(x+ ta)2 − (y + tb)2

]∣∣∣∣
t=0

= 2a(x+ ta)− 2b(y + tb)
∣∣∣
t=0

= 2ax− 2by

Alternatively, we can compute the partial derivatives (the components of ∇f);

∂

∂x
f(x,y) = 2x

∂

∂y
f(x,y) = −2y

then multiply by the components of v = (a,b),

∇f · v = 2ax− 2by

For a function f : Rn → R, the directional derivative existing for all v ∈ Rn at a point x does not imply
that f is continuous at x, similarly to how linear continuity does not imply continuity.

Multivariable Calculus | 14



MA259 5.3 The Fréchet Derivative

5.3 The Fréchet Derivative
The derivative of a function f : (a,b)→ R at a point x ∈ (a,b) is given by

lim
h→0

f(x+ h)− f(x)
h

This definition cannot be easily extended to functions f : Rn → Rk, as there is no notion of division for
vectors, unlike for real (or complex) numbers.

Instead, we rearrange the above to,

lim
h→0

|f(x+ h)− (f(x) + f ′(x)h)|
|h|

= 0

That is, for a fixed x, the nonlinear mapping h 7→ f(x + h) is locally approximated by the affine linear
map h 7→ f(x) + f ′(x)h.

Extending this idea to multivariate functions, a function f : (U ⊆ Rn)→ Rk is differentiable at x ∈ U if
there exists a linear map T ∈ L(Rn,Rk) such that

lim
h→0

∣∣f(x+ h)−
(
f(x) + T (h)

)∣∣
|h|

= 0

and we say that the linear map T is the Fréchet derivative of f , also denoted by Df(x).

Expanding the ε − δ definition of the limit, we equivalently have: a function f : (U ⊆ Rn) → Rk is
differentiable at x ∈ U if there exists a linear map T ∈ L(Rn,Rk) such that,

∀ε > 0,∃δ > 0 : |h| < δ →
∣∣f(x+ h)−

(
f(x) + T (h)

)∣∣ < ε|h|

Another characterisation is: a function f : (U ⊆ Rn) → Rk is differentiable at x ∈ U if there exists a
linear map T ∈ L(Rn,Rk) such that,

f(x+ h) = f(x) + T (h) +E(h)

where the error E(h) ∈ o(h) grows asymptotically slower than linearly in h.

Theorem 5.2. If f : (U ⊆ Rn)→ Rk is differentiable at x ∈ U , then f is continuous at x.

Proof. As f is differentiable at x, for all ε > 0, there exists δ > 0 such that,

|h| < δ → |f(x+ h)− (f(x) +Df(x)h)| ≤ ε|h|
→ |f(x+ h)− f(x)| ≤ |Df(x)h|+ ε|h|
→ |f(x+ h)− f(x)| ≤ (∥Df(x)∥+ ε)|h|

Set δ∗ := min
(
δ,ϵ/(∥Df(x)∥+ ε)

)
. Then, if |h| < δ∗, we have |h| < δ, so,

|h| < δ∗ → |f(x+ h)− f(x)| < (∥Df(x)∥+ ε)δ∗ < ϵ

■

Theorem 5.3 (Componentwise Differentiability). A function f : (U ⊆ Rn)→ Rk defined by

(x1, . . . ,xn) 7→
(
f1(x1, . . . ,xn),f2(x1, . . . ,xn), . . . ,fk(x1, . . . ,xn)

)
where (fj)

k
j=1 are real-valued functions, is differentiable at p ∈ U if and only if every fj is differentiable

at p.
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That is, f is differentiable if and only if every component fj is individually differentiable.

Theorem 5.4. For a function f : (U ⊆ Rn) → Rk, if Df(x) exists, then ∂vf(x) exists for all v ∈ Rn,
and ∂vf(x) = Df(x)v.

In particular, if f is differentiable at x, then ∂vf(x) is linear in v. That is,

∂αv+βwf(x) = α∂vf(x) + β∂wf(x)

for all α,β ∈ R and v,w ∈ Rn.

Note that the converse of this theorem does not hold – all directional derivatives existing does not
guarantee that f is differentiable.

5.4 Gradient
Let f : Rn → R. The gradient of f , denoted grad f or ∇f is the vector,

∇f =



∂f

∂x1
∂f

∂x2
...

∂f

∂xn


∇ : R→ Rn by itself is the grad operator, and is effectively a vector full of partial derivative operators.

The Jacobian matrix of a function, f : Rn → Rk, denoted J, Df , or ∂f , is the matrix of partial derivatives,

∂f =



∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

· · · ∂f2
∂xn

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3

· · · ∂f3
∂xn

...
...

...
. . .

...

∂fk
∂x1

∂fk
∂x2

∂fk
∂x3

· · · ∂fk
∂xn


This can be more compactly written as,

∂f =

[
∂f

∂x1
· · · ∂f

∂xn

]
or,

∂f =

∇f1...
∇fk


Theorem 5.5. If f : (U ⊆ Rn)→ Rk is differentiable at x ∈ U , and h ∈ Rn, then,

Df(x)(h) = ∂f(x)h
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On the left side, we have the linear map Df given by the Fréchet derivative, and on the right side, we
have the Jacobian matrix, so this theorem just says that the Fréchet derivative is represented by the
Jacobian matrix if f is already known to be differentiable at x.

Theorem 5.6. When f is differentiable at x, Df(x)(h) = ∂hf(x) = ∂f(x)h.

That is, whenever f is differentiable at x, the Fréchet derivative Df(x) centred at x evaluated at h, the
directional derivative ∂hf(x) of f at x in the direction of h, and the Jacobian matrix evaluated at x
multiplied by h are all equal.

If f is not differentiable at x – that is, the Fréchet derivative Df(x) does not exist – then directional
derivative ∂hf(x) and the Jacobian ∂f(x) may both still exist, but may not necessarily be equal.

However, if all partial derivatives are continuous at x (and hence the Jacobian is also continuous at x),
then Df(x) is guaranteed to exist:

Theorem 5.7. Consider f : (U ⊆ Rn)→ Rk and suppose there exists Br(x) ⊂ U such that the Jacobian
matrix ∂f(y) exists at all points y ∈ Br(x) and that ∂f is continuous at x. Then, f is differentiable at
x and the Fréchet derivative is equal to the Jacobian matrix

Df(x)(h) = ∂f(x)h

for all h ∈ Rn:

5.5 Geometric Approximation

Let r : [a,b] → Rk be a continuously differentiable parametrisation of a curve C = r([a,b]) ⊂ Rk.
Furthermore, suppose r is a regular parametrisation – that is, r′(t) ̸= 0 for all t. We can then interpret
r′(t) to be the vector tangent to C at r(t), or alternatively, we can view r(t) to be the position of a
particle tracing out C, and r′(t) is the velocity of the particle.

The line Lr(t) tangent to C at r(t) is then parametrised by,

ℓ(h) = r(t) + r′(t)h

But, r′(t) = ∂r(t), so the affine linear approximation of h 7→ r(t + h) by h 7→ r(t) +
(
∂r(t)

)
(h) = ℓ(h)

is a parametrisation of the tangent line Lr(t). That is, this approximation using Jacobian, for small h,
corresponds to geometrically approximating the curve C by Lr(t) near r(t). This also holds true for more
general parametrisations.

Let U ⊆ Rn be open, and let r : U → R3 be a continuously differentiable parametrisation of a surface
S = r(U) ⊂ R3. Furthermore, suppose r is a regular parametrisation – that is, ∂r(x) is of rank 2 for all
x ∈ U . If,

r(u,v) =

x(u,v)y(u,v)
z(u,v)


then,

ru =

xuyu
zu

 , rv =

xvyv
zv


(recall ru = ∂r

∂u , xu = ∂x
∂u , etc.) The Jacobian is given by,

∂r =

xu xv
yu yv
zu zv


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So, ∂ is of rank 2 if and only if ru and rv are linearly independent.

As in the 2-dimensional case, the affine linear approximation of (h,k) 7→ r(u+ h,v + k) by,

(h,k) 7→ r(u,v) +
(
∂r(u,v)

)
(h,k)

= r(u,v) + hru(u,v) + krv(u,v)

is then a parametrisation of the plane Πr(u,v) tangent to S at r(u,v).

5.5.1 Graphs

Given a function f : (U ⊆ R2)→ R, the graph, Gf of f is the surface parametrised by,

r(x,y) =
(
x,y,f(x,y)

)
That is, the height of the surface above the x-y plane is the value of f(x,y), analogous to the 2-dimensional
case where we plot the points given by

(
x,f(x)

)
.

Note that rx = (1,0,fx) and ry = (0,1,fy) are linearly independent for any function f .

A parametrisation of the plane tangent to the surface Gf at
(
x,y,f(x,y)

)
is given by,

(h,k) 7→ r(x,y) +
(
Dr(x,y)

)
(h,k)

=

 x
y

f(x,y)

+ h

 1
0
fx

+ k

 0
1
fy


=

 x+ h
y + k

f(x,y) + hfx + kfy


=

 x+ h
y + k

f(x,y) + (h,k) · ∇f(x,y)


so f is not differentiable at (x0,y0) ∈ U if and only if Gf does not have a tangent plane at

(
x0,y0,f(x0,y0)

)
.

5.6 Differentiation of Matrix-Valued Functions

L(Rn,Rk) ∼= Rk×n ∼= Rnk, so the Fréchet derivative applies similarly to functions with domains and
codomains in these spaces, the only difference being that the Euclidean norm | · | in the definition needs
to be replaced by the operator norm ∥ · ∥ or Frobenius norm ∥ · ∥F , respectively.

Example. Find the derivative of the map f : L(Rn)→ L(Rn) defined by f(T ) = T ◦ T = T 2.

We consider f(A+H)− f(A):

f(A+H)− f(A) = (A+H)(A+H)−A2

= A2 +AH +HA+H2 −A2

= AH +HA+H2

The terms linear in H are AH+HA, so we should think that
(
Df(A)

)
(H) = AH+HA is the derivative.

However, we need to verify that it satisfies the required limit. First, rearrange to obtain,

f(A+H)− f(A)− (AH +HA) = H2
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Now verify the limit:

lim
H→0

∥∥f(A+H)− f(A)−
(
Df(A)

)
(H)

∥∥
∥H∥

= lim
H→0

∥H2∥
∥H∥

≤ lim
H→0

∥H∥2

∥H∥
= lim

H→0
∥H∥

= 0

so
(
Df(A)

)
(H) = AH +HA.

If we interpret f to act on matrices, we could also note that the entries of f(A) are quadratic polynomials
in the entries of A, and are hence continuous. It then follows that f is differentiable, and

(
Df(A)

)
(H) =

∂Hf(A), so we could calculate the directional derivative instead:

∂Hf(A) =
d

dt
f(A+ tH)

∣∣∣∣
t=0

=
d

dt
(A+ tH)2

∣∣∣∣
t=0

=
d

dt
A2 + tAH+ tHA+ t2H2

∣∣∣∣
t=0

= AH+HA+ 2tH2
∣∣∣
t=0

= AH+HA

6 The Chain Rule

Theorem 6.1 (Chain Rule). Let U ⊆ Rn and V ⊆ Rk both be open. Suppose f : U → Rk is differentiable
at x ∈ U , and that f(x) ∈ V . If g : V → Rk is differentiable at f(x), then the composition g◦f : Rn → Rk

is differentiable at x, and,

D(g ◦ f)(x) = Dg
(
f(x)

)
◦Df(x)

Theorem 6.2. Given f : (U ⊆ Rn) → Rk, x ∈ U , and r > 0 such that Br(x) ⊂ U and T ∈ L(Rn,Rk),
we define ∆x,T f : Br(0)→ Rk by,

∆x,T f(h) =

{
f(x+h)−f(x)−T (h)

|h| h ̸= 0

0 h = 0

Then, f is differentiable at x with Df(x) = T if and only if ∆x,T f is continuous at 0.

Recall that the linear isomorphism µ : L(Rn,Rk)→ Rk×n maps linear transformations to their matrices.
Applying this to the chain rule above gives a form of the chain rule with Jacobian matrices:

Theorem 6.3 (Chain Rule). Let U ⊆ Rn and V ⊆ Rk both be open. Suppose f : U → Rk is differentiable
at x ∈ U , and that f(x) ∈ V . If g : V → Rk is differentiable at f(x), then the composition g◦f : Rn → Rk

is differentiable at x, and,

∂(g ◦ f)(x) = ∂g
(
f(x)

)
∂f(x)

Given functions f : Rm → R and g : R→ R, the ith partial derivative of g ◦ f can be computed with the
above chain rule as,

∂i(g ◦ f)(x) = g′(f(x))∂if(x)
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so,

∇(g ◦ f)(x) = g′(f(x))∇f(x)

Example. Calculate ∇|x|, x ∈ Rn \ {0}.

|x| =
√
|x|2

so we can apply the chain rule with f(x) = |x|2 =
∑n

i=1 x
2
i and g(t) =

√
t. First calculate ∇f and g′:

∇f = ∇(x21 + x22 + · · ·+ x2n)

=


∂1(x

2
1 + x22 + · · ·+ x2n)

∂2(x
2
1 + x22 + · · ·+ x2n)

...
∂n(x

2
1 + x22 + · · ·+ x2n)



=


2x1
2x2
...

2xn


= 2x

g′(t) =
1

2
√
t

∇|x| = ∇(g ◦ f)(x)
= g′(f(x))∇f(x)

=
1

2
√
|x|2

2x

=
x

|x|

with component form given by,

∂

∂xi
|x| = xi

|x|

6.1 The Space Cn(U,Rk) of Continuously Differentiable Functions

Suppose f : (U ⊆ Rn)→ Rk is differentiable on U . Then, f is continuously differentiable at p ∈ U if the
map Df : U → L(Rn,Rk) defined by x 7→ Df(x) is continuous at p. That is,

∀ε− 0∃δ > 0 : |x− p| < δ → ∥Df(x)−Df(p)∥ < ε

Theorem 6.4. A function f : U → Rk is continuously differentiable on U if and only if the Jacobian
matrix ∂f : U → Rk×n is continuous on U .

This means that we can check if a function is continuously differentiable by computing all first order
partial derivatives ∂ifj of f = (f1, . . . ,fk) and verifying that they are all continuous.
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6.2 Mean Value Inequality

For any vector-valued function of a single real variable, f : [a,b] → Rk, f(t) = (f1(t),f2(t), . . . ,fk(t)), we
define the integral of f as,

� b

a

f(t) dt =


� b

a
f1(t) dt� b

a
f2(t) dt
...� b

a
fk(t) dt


Lemma 6.5. For any function f : [a,b]→ Rk,∣∣∣∣∣

� b

a

f(t) dt

∣∣∣∣∣ ≤
� b

a

|f(t)| dt

Proof. Let I :=
� b

a
f(t) dt ∈ Rk. If I = 0, then we have equality. Otherwise,

|I|

∣∣∣∣∣
� b

a

f(t) dt

∣∣∣∣∣ = |I|2
= I · I

= I ·
� b

a

f(t) dt

=

� b

a

I · f(t) dt

≤
� b

a

|I||f(t)| dt

= |I|
� b

a

|f(t)| dt

Dividing the first and last terms by |I| provides the result. ■

Theorem 6.6 (Generalised Mean Value Inequality). Suppose that x,y ∈ U ⊆ Rn can be joined by a
continuously differentiable path, r : [a,b]→ U , r(a) = x, r(b) = y. Suppose that f ∈ C1(U,Rk), and that
there exists M ≥ 0 such that the Jacobian satisfies ∥∂f(x)∥ ≤M for all x ∈ U . Then,

|f(y)− f(x)| ≤M length
(
r([a,b])

)
Proof.

f(y)− f(x) = f
(
r(b)

)
− f

(
r(a)

)
=

� b

a

d

dt
f
(
r(t)

)
dt [Fundamental Theorem of Calculus II]

=

� b

a

∂f
(
r(t)

)
r′(t) dt [Chain Rule]

so by the lemma above,

|f(y)− f(x)| =

∣∣∣∣∣
� b

a

∂f
(
r(t)

)
r′(t) dt

∣∣∣∣∣
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≤
� b

a

|∂f
(
r(t)

)
r′(t)| dt

≤
� b

a

∥∂f
(
r(t)

)
∥|r′(t)| dt

≤
� b

a

M |r′(t)| dt

=M length
(
r([a,b])

)
■

Corollary 6.6.1 (Vanishing Derivative). Suppose that U ⊂ Rn is differentiably path-connected and that
f : U → Rk satisfies ∂f(x) = 0 for all x ∈ U . Then, f is constant on U .

Proof. Fix a point y ∈ U . Then, by differentiable path-connectedness, given x ∈ U , there exists a
continuously differentiable ;ath r : [a,b]→ U joining x to y. So, by the generalised mean value inequality
with ∂f = 0, f(x) = f(y) for all x ∈ U . ■

This corollary does not hold if U is not path-connected, but the converse is true even if U is not path-
connected.

For scalar valued functions f : U → R, this corollary can be stated as,

Corollary 6.6.2. If ∇f(x) = 0 at all points x of a path-connected open set, then f is constant.

A set U ⊆ Rn is convex if for all x,y ∈ U , the line,

Lx,y = {tx+ (1− t)y : 0 ≤ t ≤ 1}

is contained within U .

Corollary 6.6.3 (Mean Value Inequality). Let U ⊆ Rn be convex, and suppose that f ∈ C1(U,Rk)
satisfies ∥∂f(x)∥ ≤M for all x ∈ U for some M ≥ 0. Then,

|f(x)− f(y)| ≤M |x− y|

That is, f is Lipschitz continuous.

Proof. The result follows from the generalised mean value inequality with length(Lx,y) = |x− y|. ■

The converse of the mean value inequality does not hold. That is, a function f being Lipschitz continuous
does not imply that f is differentiable. For example, (x,y) 7→ x3

is Lipschitz continuous on all of Rn, but
is not differentiable at 0 because none of the partial derivatives ∂i|x| exist at 0. The function f : R2 → R
defined by,

(x,y) 7→ x3

x2 + y2

is also Lipschitz over all of R2, and, unlike x 7→ |x|, has partial derivatives that exist everywhere, but is
still not differentiable at (0,0).
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7 Vector Fields

In this section, U will be a path-connected open subset of Rn.

A vector field v on U ⊆ Rn is a function v : U → Rn, so a vector field consists of n functions of n
variables:

v(x) =


v1(x1,x2, . . . ,xn)
v2(x1,x2, . . . ,xn)

...
vn(x1,x2, . . . ,xn)


We think of this function as associating a vector to every point in the input space.

Example.
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A vector field will always be assumed to be at least continuous, and whenever it is differentiated, it will
be assumed to be continuously differentiable.

7.1 Paths and Curves
A path r : [a,b]→ Rn is said to be continuously differentiable on [a,b] if,

(i) r is continuous on [a,b];

(ii) f is continuously differentiable on (a,b);

(iii) The limits limt→a+ r′(t) and limt→b− r′(t) both exist so r′ is a continuous function [a,b]→ R.

We will always assume that a path r : [a,b]→ Rn is continuous and piecewise continuously differentiable
in the sense that there are a finite number of points a1, . . . ,aℓ ∈ (a,b) with a = a0 < a1 < a2 < · · · <
aℓ < aℓ+1 = b such that r is continously differentiable on [ai,ai+1] for all 0 ≤ i ≤ ℓ. If r′(t) ̸= 0 for all t,
then r is regular.

Given p,q ∈ Rn, a curve Cp,q which goes from p to q is the image of some path r : [a,b] → Rn such
that r(a) = p and r(b) = q. The path r is then called a parametrisation of Cp,q. If a curve C can be
parametrised by a regular path, then the curve is also said to be regular.

Note that the parametrisation of a curve is not unique: If φ : [α,β]→ [a,b] is continuously differentiable,
then r ◦ φ and r parametrise the same curve.
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7.2 Tangential Line Integrals
The component of a vector x ∈ Rn in the direction of a unit vector v̂ is defined as x · v̂. We also say
that x · v̂ is the component of x along v̂.

If ρ : [0,L] → Rn is the arclength or unit speed parametrisation of a regular curve Cpq ⊆ Rn, then
ρ̇(s) := dρ

ds (s) is a unit vector called the unit tangent to Cpq at ρ(s).

If v is a vector field, then v(ρ(s)) · ρ̇(s) is the tangential component of v along Cpq.

The tangential line integral of v along Cpq is defined as the integral of the tangential component of v
along Cpq:

� L

0

v
(
ρ(s)

)
· ρ̇(s) ds

Because it is generally almost impossible to parametrise a curve by its arclength, we use a change of
variable to actually compute these integrals in practice. Let r : [a,b]→ Rn be a parametrisation of Cpq.
Then, the mapping φ : [0,L]→ [a,b] relates ρ and r by ρ(s) = r

(
φ(s)

)
, so,

� L

0

v(ρ(s)) · ρ̇(s) ds =
� b

a

v
(
r(t)

)
· dr
dt
dt

This line integral is also denoted by,
�
Cpq

v · dr

obtained by cancelling the dt terms in the integral above.

Note that in the formula,
� L

0

v
(
ρ(s)

)
· ρ̇(s) ds

we have v(ρ(s)) · ρ̇(s) > 0 whenever the angle between v and the unit tangent ρ̇ is acute. Then,

1

length(Cpq)

� L

0

v
(
ρ(s)

)
· ρ̇(s) ds

represents the average value of v · ρ̇ along Cpq, so the tangential line integral is a measure of the average
rate at which the quantity described by the vector field v flows along Cpq.

If v represents a force, then
�
C
v · dr represents the work done by v when moving an object along C.

If C is a closed curve, then we write
�
C
v · dr instead, and the resulting value is sometimes called the

circulation of v around C, as it measures the rate at which the quantity described by v circulates around
C.

The value of the integral
�
Cpq

v · dr depends on the orientation of the path:

�
Cpq

v · dr = −
�
Cqp

v · dr

When C is a closed curve, we write
�
C

v · dr = −
�
C

v · dr

to indicate the orientation of the path.
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7.3 Flux

7.3.1 Flux Across Curves in R2

Given a vector v = (x,y) ∈ Rn, we define v⊥ := (y,− x). That is, v⊥ is v rotated clockwise by 90◦. In
particular, v · v⊤ = 0, so v and v⊤ are orthogonal.

The tangent ṙ(t) of a regular curve C with regular parametrisation r(t) = (x(t),y(t)) is given by ṙ(t) =
(ẋ(t),ẏ(t)), so the normal to C is given by,

N(t) := ṙ(t)⊥ =
(
ẏ(t),− ẋ(t)

)
If ρ : [0,L]→ Rn is the arclength parametrisation of C, then n(s) := ρ̇(s)⊥ is the unit normal to C.

The flux of a vector field v(x,y) =
(
v1(x,y),v2(x,y)

)
across a curve C is defined as the integral of the

normal component of v,
� L

0

v
(
ρ(s)

)
· n(s) ds

Again, due to difficulties with parametrising a curve by its arclength, we compute this integral with
another change of variable:

� L

0

v
(
ρ(s)

)
· n(s) ds =

� b

a

v
(
r(t)

)
·N(t) dt

7.3.2 Flux Across Surfaces in R3

A surface S ⊂ R3 is parametrised by the map r : (U ⊆ R2)→ R3 with U open, defined by,

r(u,v) =
(
x(u,v),y(u,v),z(u,v)

)
The tangent plane Tr(u,v)S of S at r(u,v) is spanned by ∂r

∂u (u,v) and ∂r
∂v (u,v). It follows that the dimension

of the tangent plane Tr(u,v)S is 2 if and only if the tangent vectors are linearly independent. If this is
the case for all (u,v) ∈ U , then r is a regular parametrisation of S.

The tangent vectors ∂r
∂u and ∂r

∂v are linearly independent if and only if ∂r
∂u ×

∂r
∂v ̸= 0, in which case,

N(u,v) :=
∂r

∂u
× ∂r

∂v

is a normal to S at r(u,v).

Similarly to the definition of flux across a curve, the flux of a vector field v across a surface S is defined
by,

�
S

v · n̂ dA

where n is a unit normal to S and dA is the area element on S. With respect to a parametrisation r of
S, we have,

n(u,v) :=
∂r
∂u ×

∂r
∂v∣∣ ∂r

∂u ×
∂r
∂v

∣∣ , dA :=

∣∣∣∣ ∂r∂u × ∂r

∂v

∣∣∣∣ du dv
or,

n(u,v) :=
N

|N|
, dA := |N | du dv
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so the flux integral is given by,
�

S

v · n̂ dA =

�
U

v
(
r(u,v)

)
·
(
∂r

∂u
× ∂r

∂v

)
du dv

The flux of v across S is also denoted by,
�

S

v · dA,
�

S

v · n dS, and
�

S

v · dS

8 The Integral Theorems of Vector Calculus

8.1 Green’s Theorem for a Rectangle

Let U ⊆ R2 be open. A vector field v : U → R2 is called a planar vector field. As usual, we will assume
v is continuously differentiable over U .

Let R denote the rectangle [α,β] × [ξ,η] that is contained entirely (including the boundary ∂R) within
U .

(α,ξ) (β,ξ)

(β,η)(α,η)

x

y

Consider the line integral of v around ∂R. If v(x,y) = (a(x,y),b(x,y)) for some scalar-valued functions
a,b : U → R, then,

�
∂R

v · dr =
� β

α

a(x,ξ) dx+

� η

ξ

b(β,y) dy −
� β

α

a(x,η) dx−
� η

ξ

b(α,y) dy

By the fundamental theorem of calculus, we have,
� β

α

a(x,ξ) dx−
� β

α

a(x,η) dx =

� β

α

� η

ξ

−∂a(x,y)
∂y

dy dx

� η

ξ

b(β,y) dy −
� η

ξ

b(α,y) dy =

� η

ξ

� β

α

∂b(x,y)

∂x
dx dy

So,
�
∂R

v · dr =
�

R

∂b(x,y)

∂x
− ∂a(x,y)

∂y
dx dy

obtaining the statement of Green’s theorem for a rectangle.
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8.1.1 Regions and Unit Normals

A region in Rn is a bounded open subset Ω of Rn for which there exists a function f : Rn → R such that,

• All partial derivatives of f are continuous;

• Ω = {x ∈ Rn : f(x) < 0};

• ∇f(p) ̸= 0∀p ∈ f−1{0} = {p ∈ Rn : f(p) = 0}.

The function f is then the defining function of Ω. The set f−1{0} is also the boundary of Ω, also denoted
∂Ω. We also denote the closure Ω ∪ ∂Ω by Ω.

Example. Let f(x,y,z) = x2 + y2 + z2 − 1. Then, the region defined by f is,

{(x,y,z) : f(x,y,z) < 0} = {(x,y,z) : x2 + y2 + z2 < 1}
= B1(0)

is the unit ball in R3, and its boundary is the unit 2-sphere S2(1) = {x ∈ R3 : |x| = 1}. Note that

∇f(x,y,z) = 2(x,y,z)

̸= 0

as required.

The last requirement that ∇f(p) ̸= 0 for all p ∈ ∂Ω allows us to define the outward unit normal to Ω at
p:

n+(p) :=
∇f(p)
|∇f(p)|

Unfortunately, this requirement also excludes some well-behaved subsets like polygons and polyhedra
which do not have well defined normals at vertices and edges, so we also consider piecewise regions.

8.1.2 Boundary Orientation

We now focus on the 2-dimensional case. The boundary of a 2-dimensional, or planar, region Ω is a
curve, or, if Ω is not simply connected as in the case of an annulus, a system of curves.

Let n+(p) =
(
h(p),k(p)

)
be the outward unit normal to the region Ω at the point p ∈ ∂Ω. The positively

oriented unit tangent vector t+(p) at p is then the vector
(
−k(p),h(p)

)
. That is, the outward unit normal

rotated counterclockwise by 90◦, or,

t+(p) = −n+(p)
⊥

Informally, a tangent vector t to ∂Ω is positively oriented if, when facing in the direction of the vector,
the interior of the region is to our left, and is negatively oriented otherwise. For example, if Ω = B, then
a tangent vector that follows the unit circle in a counterclockwise manner is positively oriented.

However, take an annulus, for example. This region has two boundary curves; an exterior and interior
boundary. A tangent vector on the exterior boundary is positively oriented if it follows the boundary
counterclockwise, but a tangent vector on the interior boundary is positively oriented if it follows the
boundary clockwise.
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8.2 Green’s Theorem for Planar Regions
In this section we will assume that all vector fields and functions considered are continuously differentiable
on an open set U ⊆ R2, and that (the closure of) any region Ω lies entirely within U .

The curl of a planar vector field v : U → R2 defined by,

v(x,y) =
(
a(x,y),b(x,y)

)
is defined to be the function,

curl v =
∂b

∂x
− ∂a

∂y

Theorem 8.1 (Green’s Theorem for Planar Regions). Let Ω be a region in R2 and let v : U → R2 be a
continuously differentiable planar vector field on U that contains Ω. Then,�

Ω

curl v(x,y) dAx,y =

�
∂Ω

v · t+ ds =
�
∂Ω

vli⋉ · dr

where s is the arclength parameter along ∂Ω, r is a positively oriented parametrisation of ∂Ω, and the
area element dAx,y is more often written as dx dy.

Recall that
�
∂Ω
v · dr is the circulation of v around ∂Ω.

8.3 Flux and Divergence in the Plane
The divergence of a vector field v(x1, . . . ,xn) = (v1(x1, . . . ,xn),v2(x1, . . . ,xn), . . . ,vn(x1, . . . ,xn)), denoted
by div v and ∇ · v, is defined by,

∇ · v :=

n∑
i=1

∂vi
∂xi

Let v,w ∈ R2. Then, v ·w = v⊥ ·w⊥ and (v⊥)⊥ = −v. So, if v is a planar vector field and Ω is a region
in R2 that satisfy the hypotheses of Green’s theorem, then,

v⊥ · t+ = (v⊥)⊥ · t⊥+
= −v · n+

The flux of v across ∂Ω is then given by,�
∂Ω

v · n+ ds = −
�
v⊥ · t+ ds

= −
�

Ω

curl v⊥ dx dy

= −
�

Ω

(
∂(−a)
∂x

− ∂b

∂x

)
dx dy

=

�
Ω

(
∂a

∂x
+
∂b

∂x

)
dx dy

=

�
Ω

∇ · v(x,y) dx dy

Theorem 8.2 (Divergence Theorem for a Planar Region). Let Ω be a region in R2 and let v : U →2 be
a continuously differentiable planar vector field on U which contains Ω. Then,�

Ω

∇ · v(x,y) dAx,y =

�
∂Ω

v · n+ ds

where n+ is the outward unit normal to Ω.
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Proof. Follows from Green’s theorem as shown above. ■

8.4 Flux and Divergence in R3

Theorem 8.3 (Divergence Theorem). Let Ω be a region in R3 and let v : U → R3 be a continuously
differentiable vector field on U which contains Ω. Then,

�
Ω

∇ · v(x,y,z) dVx,y,z =

�
∂Ω

v · n+ dA

where n+ is the outward unit normal to Ω, dVx,y,z is the volume element of Ω, more often written as
dx dy dz.

8.5 Gradient Fields
If a vector field v is the gradient of a function f : (U ⊆ Rn) → R, then v is called a gradient field, and
the function f is called a scalar potential of v.

Theorem 8.4 (Fundamental Theorem of Calculus for Gradient Vector Fields). Given a continuously
differentiable function f : U → R and a curve Cpq ⊂ U from p to q parametrised by a continuously
differentiable path r : [a,b]→ U, we have,

�
Cpq

∇f · dr = f(q)− f(p)

Corollary 8.4.1. This means that the value of a tangential line integral of a gradient field depends only
on the orientation of C and the endpoints p and q, and not on the shape of C itself.

In particular, if the curve is closed, then the endpoints coincide, and we have:

Corollary 8.4.2. For all closed curves C,
�
C

∇f · dr = 0

These two corollaries are equivalent in that any vector field that satisfies one will satisfy the other. Such
a vector field is called a conservative vector field.

For example, gravity is a conservative field; it doesn’t matter how you climb up a mountain, you gain
the same amount of gravitational potential energy regardless of choice of path. Similarly, if you walk
around but end up back where you started, you will have zero net gain of gravitational potential energy.

Theorem 8.5. A vector field is conservative if and only if it is a gradient field.

8.5.1 Incompressible and Irrotational Vector Fields

A vector field whose divergence is zero everywhere is called an incompressible or divergence-free vector
field.

Theorem 8.6 (Zero Flux Property). If v ∈ C1(U ⊆ R3,R3) is incompressible, and Ω ⊂ U , then,
�

∂Ω

v · n+ dA = 0

Proof. v is incompressible, so ∇ · v = 0. By the divergence theorem,
�

∂Ω

v · n+ dA =

�
Ω

∇ · v dV
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=

�
Ω

0 dV

= 0

■

A vector field whose curl is zero everywhere is called an irrotational vector field.

Theorem 8.7. Every conservative field is irrotational.

Proof.

curl(∇f) = ∂

∂x

(
∂f

∂y

)
− ∂

∂y

(
∂f

∂x

)
=

∂f

∂x∂y
− ∂f

∂y∂x

= 0

■

8.5.2 Laplacian and Harmonic Functions

Let v be a incompressible conservative vector field with scalar potential f . Then, f satisfies the second
order partial differential equation ∆f = 0, where,

∆f := ∇ · (∇f)

=

n∑
i=1

∂2f

∂x2i

is the Laplacian of f .

For f ∈ C2(U), the equation ∆f = 0 is called Laplace’s equation, and its solutions are called harmonic
functions or harmonic scalar fields.

9 Second Order Derivatives

9.1 Bilinear Forms
A linear map from a vector space to its field of scalars is called a linear functional or covector. The space
L(Rn,R) of linear functionals on Rn is denoted by (Rn)∗.

With respect to the standard basis of Rn, (Rn)∗ is identified with R1×n. That is, every linear functional
can be represented by a row vector.

A linear map T : Rn → (Rn)∗ can be viewed as a bilinear form T̂ : Rn × Rn → R:

T̂ (a,b) := a⊤Tb

9.2 The Hessian Matrix
Recall that if f : (U ⊆ Rn) → R is differentiable at x, then there exists a linear transformation
Df ∈ L(Rn,R) = (Rn)∗ such that,

lim
h→0

∣∣f(x+ h)−
(
f(x) +Df(h)

)∣∣
|h|

= 0
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(and further recall that Df(x) is given by the Jacobian matrix, ∂f(x)).

Now, consider the case where Df(x) itself is differentiable. Then, there exists some linear map T ∈
L(Rn,(Rn)∗) such that,

lim
h→0

∣∣Df(x+ h)−
(
Df(x) + T (h)

)∣∣
|h|

= 0

This map, if it exists, is called the Hessian of f , also denoted by D2f(x).

Suppose all second-order partial derivatives of f : Rn → R exist. Then, we define the Hessian matrix,
denoted by Hf or ∂2f(x), as,

Hf =



∂2f

∂x21

∂2f

∂x1∂x2
· · · ∂2f

∂x1∂xn
∂2f

∂x2∂x1

∂2f

∂x22
· · · ∂2f

∂x2∂xn
...

...
. . .

...

∂2f

∂xn∂x1

∂2f

∂xn∂x2
· · · ∂2f

∂x2n


That is, the (i,j)th entry is given by,

(Hf )i,j =
∂2f

∂xi∂xj

This is the matrix that represents the Hessian transformation, if it exists. Note that the converse does
not hold: even if all second order partial derivatives exist, and hence the Hessian matrix exists, Df may
not necessarily be differentiable.

9.3 Non-Commutativity of Second Order Partial Derivatives
Second order partial derivatives do not, in general, commute. That is, for example,

∂f

∂x∂y
̸= ∂f

∂y∂x

However, these derivatives can commute under certain restrictions.

Theorem 9.1. If the Hessian transformation D2f(x) exists, then the second order partial derivatives
at x commute. That is,

∂f

∂x∂y
(x) =

∂f

∂y∂x
(x)

for all i,j; or, Hf is symmetric.

Corollary 9.1.1. If all second order partial derivatives are continuous at x, then the second order partial
derivatives commute at x.

10 Inverse Function Theorem

10.1 Change of Variables and Inverse Functions
Let U and V be open subsets of Rn. A change from variables (x1, . . . ,xn) ∈ U to variables (y1, . . . ,yn) ∈ V
is achieved using a function Ψ : U → V , with Ψ = (ψ1, . . . ,ψn)such that,

y1 = (ψ1(x1, . . . ,xn))
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y2 = (ψ2(x1, . . . ,xn))

...

yn = (ψn(x1, . . . ,xn))

If Ψ is bijective, then we can change back from y-variables to x-variables with the inverse map Ψ−1.

Theorem 10.1. Suppose Ψ : U → V is a bijection differentiable at x ∈ U , and suppose further that Ψ−1

is differentiable at y = Ψ(x) ∈ V . Then, DΨ(x) and DΨ−1(y) are both invertible and,

DΨ−1(y) =
(
DΨ(Ψ−1(y))

)−1

Proof. For all y ∈ V ,

Ψ
(
Ψ−1(y)

)
= y

Differentiating using the chain rule, we have,

DΨ
(
Ψ−1(y)

)
◦DΨ−1(y) = idRn

and the result follows. ■

In the 1-dimensional case, the Fréchet derivative is just the ordinary derivative, so this result is written
as,

(Ψ−1)′(y) =
1

Ψ′
(
Ψ−1(y)

)
or more memorably as,

dx

dy
=

1
dy
dx

10.2 Local Inverses
Does the converse of the previous theorem hold? That is, if Ψ : U → V is differentiable at x ∈ U , and
DΨ(v) is invertible – does it then follow that Ψ−1 exists, and if it does, is it differentiable?

First, DΨ(x) depends only on the behaviour of Ψ near x, so if
(
DΨ(x)

)−1 exists, then Ψ−1 can exist at
most near Ψ(x), and not on all of Ψ(U).

We will now only consider linear maps in the space L(Rn,Rn). From the rank-nullity theorem, any such
linear map is injective if and only if it is surjective, which will be useful for showing that an inverse
exists.

Let p ∈ U . If Np ⊆ U is an open set containing p, then we say that Np is an (open) neighbourhood of p.

Then, a function Ψ : U → V is a local bijection at p ∈ U if there is an open neighbourhood Np of p and
an open neighbourhood Nq of q = Ψ(p) such that the restriction Ψ : Np → Nq is a bijection. We also
say that Ψ is locally invertible at p, and that inverse of the restricted function, Ψ−1 : Nq → Np is the
local inverse of Ψ. This local inverse is also called a branch of the global or full inverse Ψ−1 (if it exists).

Example. Consider Ψ : R→ R≥0 defined by x 7→ x2. Ψ is not injective, since Ψ(x) = Ψ(−x).

But, take some p > 0, and the open neighbourhood Np = (0,∞). Then, q = Ψ(p) = p2 > 0, and we can
take the open neighbourhood Nq = (0,∞), and indeed Ψ restricted to these neighbourhoods is bijective,
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with local inverse given by Ψ−1(y) =
√
y. We can use the previous theorem to calculate the derivative

of this inverse:

Ψ′(x) = 2x

(Ψ−1)′(y) =
1

Ψ′(Ψ−1(y))

=
1

Ψ′(
√
y)

=
1

2
√
y

If we instead take p < 0 with open neighbourhood Np = (−∞,0), and q = p2 > 0 with open neigh-
bourhood Nq = (0,∞), Ψ is again bijective, with local inverse given by Ψ−1(x) = −

√
x. This time, the

derivative is given by,

Ψ′(x) = 2x

(Ψ−1)′(y) =
1

Ψ′(Ψ−1(y))

=
1

Ψ′(−√y)

= − 1

2
√
y

However, with our definition of a local inverse, there is no open neighbourhood around p = 0 such that
Ψ is a bijection, so Ψ is not invertible on any open interval containing 0.
√
y and −√y then form the two branches of the multivalued full inverse Ψ−1(y) = ±√y.

Theorem 10.2 (Inverse Function Theorem). Let U ⊆ Rn be open, and suppose Ψ : U → Rn is contin-
uously differentiable. Suppose that the Fréchet derivative DΨ(p) is invertible at a point p ∈ U (that is,
the Jacobian ∂Ψ(p) has non-zero determinant), and define q = Ψ(p). Then,

• There exist neighbourhoods Np ⊂ U and Nq ⊂ Ψ(U) of p and q respectively, such that the restric-
tion Ψ : Np → Nq is a bijection;

• The inverse of the restriction, Ψ−1 : Nq → Np, is continuously differentiable, and furthermore,

DΨ−1(y) =
(
DΨ(Ψ−1(y))

)−1

for all y ∈ Nq.

A map Ψ : U → V between two open subsets of Rn is called a diffeomorphism if it is bijective, continously
differentiable on U , and its inverse is continuously differentiable on V .

Ψ is called a local diffeomorphism near p ∈ U if there exists a neighbourhood Np ⊂ U of p such that
the restriction Ψ : Np → Nq is a diffeomorphism, where q := Ψ(p) and Nq := Ψ(Np) ⊂ V is a
neighbourhood of q.

Theorem 10.3. Let U ⊆ Rn be open. Given a continuously differentiable function f : U → Rk, suppose
Df(p) is injective at some point p ∈ U . Then there exists δ > 0 such that Bδ(p) ⊂ U and such that f is
injective on Bδ(p).
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11 Implicit Function Theorem

All functions in this section will be assumed to be continuously differentiable so we will write the Jacobian
for the derivative instead of the Fréchet derivative.

Suppose we have a function F : R2 → R. If we set F (x,y) = c for some c ∈ R, then this equation defines
y implicitly in terms of x, or x implicitly in terms of y.

For instance, if F (x,y) = x2 + y2 and c > 0, then x2 + y2 = c describes a relation between x and y
implicitly. If c ̸= ±

√
c, then the equation has two solutions for y in terms of x; namely, y(x) =

√
c− x2

and y(x) = −
√
c− x2, −

√
c < x <

√
c. Each of these solutions is called an explict determination of y in

terms of x by the means of the functions
√
c− x2 and −

√
c− x2.

Let U be an open subset of Rn+ℓ = Rn ⊕ Rℓ. We will write (x,y) for points in Rn+ℓ, where x ∈ Rn and
y ∈ Rℓ.

Given a continuously differentiable function F : U → Rℓ, we will write the Jacobian ∂F(x,y) ∈ Rℓ×(n+ℓ)

as (∂xF(x,y) ∂yF(x,y)) where ∂xF ∈ Rℓ×n and ∂yF ∈ Rℓ×ℓ

So, a matrix Λ ∈ Rℓ×(n+ℓ) can be written as Λ = [A B], where A ∈ Rℓ×n and B ∈ Rℓ×ℓ. If we
then write a vector z ∈ Rn×ℓ as z = (x,y) where x ∈ Rn and y ∈ Rℓ, then we can write a linear map
F : Rn+ℓ → Rℓ defined by F(z) = Λz as,

F(x,y) = [A B]

[
x
y

]
= Ax+By

Given some c ∈ Rℓ, we can then rewrite the equation F(x,y) = c as,

By = c−Ax

This linear system of equations can be solved for the ℓ variables in y explicitly in terms of the n variables
in x if B is invertible:

y = B−1(c−Ax)

If B is not invertible, then the system either has infinitely many solutions y if it is consistent, or no
solutions if it is inconsistent. In either case, y cannot be written uniquely as a linear function of x if B
is not invertible.

The implicit function theorem for a general continuously differentiable function F : U → Rℓ asserts that,
if we have one solution (x0,y0) of the equation F(x,y) = c, and if ∂yF(x0,y0) ∈ Rℓ×ℓ is invertible, then
we can solve for y in terms of x for x sufficiently near x0. The implicit function theorem is therefore
concerned with converting an implicit relation F(x,y) = c to an explicit relation y = g(x) such that the
relation F(x,g(x)) = c holds for all x in some open neighbourhood Nx0

containing x.

Theorem 11.1 (Implicit Function Theorem). Let U ⊆ Rn + ℓ be open and let c ∈ Rℓ. Suppose that
F : U → Rℓ is continuously differentiable, and that theequation F(x,y) = c has a solution (x0,y0) ∈ U
such that det

(
∂yF(x0,y0)

)
̸= 0. Then, there exists an open neighbourhood Nx0

⊆ Rn of x0 and a
continuously differentiable function g : Nx0

→ Rℓ such that,

• g(x0) = y0, {
(
x,g(x)

)
: x ∈ Nx0

} ⊂ U , and F(x,g(x)) = c for all x ∈ Nx0
;

• Furthermore, ∂yF(x,g(x)) is locally invertible over all x ∈ Nx0 , and the derivative of g is given
by,

∂g(x) = −
(
∂yF(x,g(x))

)−1 · ∂xF(x,g(x))

for all x ∈ Nx0 .
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Example. In the previous example, we had F (x,y) = x2 + y2. Given a point (x0,y0) on the circle
F (x,y) = c > 0 such that y0 > 0, we have seen that g(x) =

√
c− x2. The implicit function then gives

the derivative of g to be,

∂xF (x,y) = [2x]

∂yF (x,y) = [2y]

g′(x) = −
(
∂yF (x,g(x))

)−1 · ∂xF (x,g(x))

= − 2x

2g(x)

= − x√
c− x2

Geometrically, the implicit function theorem asserts that if det
(
∂yF(x0,y0)

)
̸= 0, then near a point

(x0,y0), the level set Γc := {(x,y) : F(x,y) = c} is the graph Gg of a function y = g(x). That is, near
(x0,y0),

Γc = Gg := {(x,g(x)) : x ∈ Nx0} = {(x,y) : y = g(x),x ∈ x0}

For instance, for F (x,y) = x2 + y2 = c > 0, ∂yF (x0,y0) ̸= 0 whenever y0 ̸= 0. If y0 > 0, then (x0,y0)
is contained in the upper semicircle which is the graph of y =

√
c− x2, and if y0 < 0, then (x0,y0) is

contained in the lower semicircle which is the graph of y =
√
c− x2.

The graph of a continuously differentiable function of one variable is a special case of a regular parametri-
sation of a curve, and the graph of a continuously differentiable function of two variables is a special
case of a regular parametrisation of a surface. Regular parametrisations can be pieced together to form
spaces that are known as submanifolds of Euclidean spaces. The circle in this case is a 1-dimensional
submanifold of R2 that can be viewd as being pieced together along overlaps from the four semicircles
which are the graphs of,

y(x) =
√
c− x2,x ∈ (−

√
c,
√
c) x(y) =

√
c− y2,y ∈ (−

√
c,
√
c)

y(x) = −
√
c− x2,x ∈ (−

√
c,
√
c) x(y) = −

√
c− y2,y ∈ (−

√
c,
√
c)

A set M ⊂ Rn+ℓ is a submanifold (without boundary) of dimension n if, for each p ∈ M , there exists
an open neighbourhood Np ⊂ Rn+ℓ of p, an open set U ⊂ Rn and a continuously differentiable function
r : U → Rn+ℓ, such that r(xp) = p for some xp ∈ U , r : U →M∩Np is a bijection, and rank(∂r(x)) = n
for all x ∈ U .

The function r is then called a (regular) parametrisation of M ∩ Np. The tangent space Tr(x)M of M
at r(x) is the image of ∂r(x) shifted by r(x); that is, r(x) + span

(
∂1r(x), . . . ∂nr(x)

)
, or,

Tr(x)M = {r(x) + (∂r(x))h : h ∈ Rn}

Thus, the tangent space is identified with the image of the affine linear approximation of r.

Theorem 11.2. Given a continuously differentiable function F : (U ⊆ Rn+ℓ) → Rℓ with U open, and
some fixed c ∈ Rℓ, define the level set Γc := {z ∈ U : F(z) = c}.

Suppose that rank
(
∂F(z)

)
= ℓ for all z ∈ Γc. Then, Γc is a submanifold (without boundary) of dimension

n in Rn+ℓ. Furthermore, TzΓc = z+ ker(∂F(z)) = {z+ v : ∂F(z)v = 0}.

In the special case that ℓ = 1, then Γc is called a hypersurface and,

∂F(z) = (∂1F(z), . . . ∂n+1F(z)), ∇F(z) =

 ∂1F(z)
...

∂n+1F(z)


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so,

v ∈ ker
(
∂F(z)

)
←→ (∇F(z)) · v = 0

←→ ∇F(z) ⊥ TzΓc

so ∇F is orthogonal to the level set Γc, so the gradient of a function is the normal to the hypersurface
it describes.

If we also have n = 1, then Γc is called a level curve in R2, and if n = 1, then Γc is called a level surface
in R3.
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